Selected Publications

Time:2025-09-05Views:10842

 

 

1.        Liu, H. J., Qi, L., Yin, C. Y., Tang, P. P., Bi, G. Q.*, & Lau, P. M.*. Activity‐induced conversion from dendritic filopodia to spines mediated by NMDA receptor‐dependent calcium transients and vesicular exocytosis. The Journal of Physiology. (2025)https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/JP286355

 

2.        Shi, M. Y.#, Yao, Y.#, Wang, M.#, Yang, Q.#, Ding, L., Li, R., ... Xu, C.* & Bi, G. Q*. High-speed mapping of whole-mouse peripheral nerves at subcellular resolution. Cell, 188, 3897–3915. (2025)https://www.cell.com/cell/fulltext/S0092-8674(25)00673-7

 

3.        Yang, C. Y., Shen, Y., Qi, X., Ding, L., Xiao, Y., Zhu, Q., ... & Bi, G. Q*. IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution. Neuroscience Bulletin, 41(2), 344-348. (2025)https://link.springer.com/article/10.1007/s12264-024-01316-w

 

4.        Li, S., Shen, Y., Chen, Y., Hong, Z., Zhang, L., Ding, L., ... & Bi, G. Q. Single-Neuron Reconstruction of the Macaque Primary Motor Cortex Reveals the Diversity of Neuronal Morphology. Neuroscience Bulletin, 1-6. (2025)https://link.springer.com/article/10.1007/s12264-025-01352-0

 

5.        Zheng, W.#, Mu, H.#, Chen, Z., Liu, J., Xia, D., Cheng, Y., ... & Wang, H*. NEATmap: a high-efficiency deep learning approach for whole mouse brain neuronal activity trace mapping. National Science Review, 11(5), nwae109. (2024)

https://academic.oup.com/nsr/article/11/5/nwae109/7635692?login=true

 

6.        Xue F#, Li F#, Zhang KM#, Ding LF, Wang Y, Zhao X, Xu F, Zhang DK, Sun MZ, Lau PM, Zhu QY, Zhou PC*& Bi GQ*. Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes. National Science Review11, nwad294. (2024)https://academic.oup.com/nsr/article/11/1/nwad294/7438875?login=true

 

7.         Zhang KM, Shen Y, Jia CH, Wang H, Bi GQ*& Lau PM*. A new paradigm of learned cooperation reveals extensive social coordination and specific cortical activation in mice. Molecular Brain 16(1): 1-6. (2023) https://link.springer.com/article/10.1186/s13041-023-01032-y

 

8.         Li XW, Ren Y, Shi DQ, Qi L, Xu F, Xiao YY, Lau PM*&Bi GQ. Biphasic Cholinergic Modulation of Reverberatory Activity in Neuronal Networks. Neuroscience Bulletin39(5): 731-744.  (2023) https://link.springer.com/article/10.1007/s12264-022-01012-7

 

9.         Shi DQ, Xu F, Bi GQ*&Lau PM*. Conserved Spatiotemporal Dynamics with Millisecond Precision During Reverberatory Activity in a Self-organized Neuronal Network. Neuroscience Bulletin 39(5): 808-812. (2023) https://link.springer.com/article/10.1007/s12264-023-01033-w

 

10.    Liu, Y. T.#, Zhang, H.#, Wang, H., Tao, C. L., Bi, G. Q.*, & Zhou, Z. H*. Isotropic reconstruction for electron tomography with deep learning. Nature communications, 13(1), 6482. (2022)

https://www.nature.com/articles/s41467-022-33957-8

 

11.    Liu QQ, Cheng YX, Jing Q, Zhang KM, Ding LF, Fan XW, Jia CH, Xu F, Bi GQ*& Lau PM*. Preferential subcortical collateral projections of pedunculopontine nucleus-targeting cortical pyramidal neurons revealed by brain-wide single fiber tracing. Molecular Brain15(1):88. (2022) https://link.springer.com/article/10.1186/s13041-022-00975-y

 

12.    Bi GQ & Rodal AA. Editorial overview: Cellular neuroscience. Current Opinion in Neurobiology 76, 102625-102625. (2022) https://www.sciencedirect.com/science/article/pii/S0959438822001192?via%3Dihub

 

13.     Shen Y, Ding LF, Yang CY, Xu F, Lau PM & Bi GQ*. Mapping big brains at subcellular resolution in the era of big data in zoology. Zoological research 43, 597-599. (2022)

https://pmc.ncbi.nlm.nih.gov/articles/PMC9336455/

 

14.     Xue M, Shi WT, Zhou SB, Li YN, Wu FY, Chen QY, Liu RH, Zhou ZX, Zhang YX, Chen YX, Xu F, Bi GQ, Li XH, Lu JS* & Zhuo M*. Mapping thalamic-anterior cingulate monosynaptic inputs in adult mice. Molecular Pain 18. (2022) https://journals.sagepub.com/doi/full/10.1177/17448069221087034

 

15.     Shi WT, Xue M, Wu FY, Fan KX, Chen QY, Xu F, Li XH, Bi GQ, Lu JS* & Zhuo M*. Whole-brain mapping of efferent projections of the anterior cingulate cortex in adult male mice. Molecular Pain 18. (2022) https://journals.sagepub.com/doi/full/10.1177/17448069221094529

 

16.     Qu L#, Li YY#, Xie P, Liu LJ, Wang YM, Wu J, Liu Y, Wang T, Li LF, Guo KX, Wan W, Ouyang L, Xiong F, Kolstad AC, Wu ZH, Xu F, Zheng YF, Gong H, Luo QM, Bi GQ, Dong HW, Hawrylycz M, Zeng HK & Peng HC*. Cross-modal coherent registration of whole mouse brains. Nature Methods, 19, 111-118.(2022) https://www.nature.com/articles/s41592-021-01334-w

 

17.    Huang C, Wang Y, Chen P, Shan QH, Wang H, Ding LF, Bi GQ & Zhou JN*. Single-cell reconstruction reveals input patterns and pathways into corticotropin-releasing factor neurons in the central amygdala in mice. Communications Biology 5. (2022)

https://www.nature.com/articles/s42003-022-03260-9

 

18.     Xu F#, Shen Y#, Ding L#, Yang CY#, Tan H, Wang H, Zhu Q, Xu R, Wu F, Xiao Y, Xu C, Li Q, Su P, Zhang LI, Dong HW, Desimone R, Xu F, Hu X, Lau PM* & Bi GQ*. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nature Biotechnology 39, 1521-1528. (2021) https://www.nature.com/articles/s41587-021-00986-5

 

19.     Shi MY, Ding LF, Guo YH, Cheng YX, Bi GQ* & Lau PM*. Long-range GABAergic projections from the nucleus of the solitary tract. Molecular Brain 14, 38. (2021)https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-021-00751-4

 

20.     Park C, Chen X, Tian CL, Park GN, Chenouard N, Lee H, Yeo XY, Jung S, Tsien RW, Bi GQ & Park H *. Unique dynamics and exocytosis properties of GABAergic synaptic vesicles revealed by three-dimensional single vesicle tracking. Proc Natl Acad Sci U S A 118. (2021) https://www.pnas.org/doi/full/10.1073/pnas.2022133118

 

21.     Goering S*, Klein E, Specker Sullivan L, Wexler A, Aguera YAB, Bi G, Carmena JM, Fins JJ, Friesen P, Gallant J, Huggins JE, Kellmeyer P, Marblestone A, Mitchell C, Parens E, Pham M, Rubel A, Sadato N, Teicher M, Wasserman D, Whittaker M, Wolpaw J & Yuste R. Recommendations for Responsible Development and Application of Neurotechnologies. Neuroethics 1-22. (2021) https://link.springer.com/article/10.1007/s12152-021-09468-6

 

22.     Fan S#, Qi L#, Li J*, Pan D, Zhang Y, Li R, Zhang C, Wu D, Lau P, Hu Y, Bi G*, Ding W* & Chu J, Guiding the Patterned Growth of Neuronal Axons and Dendrites Using Anisotropic Micropillar Scaffolds. Advanced Healthcare Materials 10:e2100094.(2021) https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202100094


23.     Liu YT#, Tao CL#, Zhang XK#, Xia WJ, Shi DQ, Qi L, Xu C, Sun R, Li XW, Lau PM*, Zhou Z H* & Bi GQ*. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapse. Nature Neuroscience. (2020) https://www.nature.com/articles/s41593-020-00729-w

 

24.     Xu C#, Liu HJ#, Qi L , Tao CL, Wang YJ, Shen ZY, Tian CL, Lau PM* & Bi GQ*. Structure and plasticity of silent synapses in developing hippocampal neurons visualized by super-resolution imaging. Cell Discovery 6:8. (2020) https://www.nature.com/articles/s41421-019-0139-1

 

25.     Liu YT#, Shivakoti S#, Jia F, Tao CL, Zhang B, Xu FQ, Lau PM, Bi GQ* & Zhou ZH*. Biphasic exocytosis of herpesvirus from hippocampal neurons and mechanistic implication to membrane fusion. Cell Discovery 6:2. (2020) https://www.nature.com/articles/s41421-019-0134-6

 

26.     Li F, Jia CH, Huang J, Bi GQ* & Lau PM*. High frequency optogenetic activation of inputs to the lateral amygdala forms distant association with foot-shock. Molecular Brain 13:44. (2020) https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-020-00587-4

 

27.     Zhou Z#, Liu XM #, Chen SP, Zhang ZJ, Liu YM, Montardy Q, Tang YQ, Wei PF, Liu N, Li L, Song R, Lai J, He XB, Chen C, Bi GQ, Feng GP, Xu FQ* & Wang LP*. A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses. Neuron 103, 473-488. (2019)

       https://www.cell.com/neuron/fulltext/S0896-6273(19)30480-5?uuid=uuid%3A48f8c567-b96e-4675-89e4-0a8b195399d1

 

28.     Zhang YB#, Liu W#, Li ZH, Kumar V, Alvarez-Cabrera AL, Leibovitch EC, Cui YX, Mei Y, Bi GQ, Jacobson S & Zhou ZH*. Atomic Structure of the Human Herpesvirus 6B Capsid and Capsid-Associated Tegument Complexes. Nature Communications.10:5346. (2019)

https://www.nature.com/articles/s41467-019-13064-x

 

29.     Xu ZQJ, Xu F, Bi GQ, Zhou D & Cai D. A cautionary tale of entropic criteria in assessing the validity of the maximum entropy principle. EPL (Europhysics Letters) 126, 38005. (2019)

   https://iopscience.iop.org/article/10.1209/0295-5075/126/38005/meta

 

30.     Wang Y, Yin J, Wang GY, Li PP, Bi GQ, Li SN, Xia XH, Song JR, Pei G* & Zheng JC*. Responsibility and Sustainability in Brain Science, Technology, and Neuroethics in China-a Culture-Oriented Perspective. Neuron 101, 375-379. (2019) https://www.cell.com/neuron/fulltext/S0896-6273(19)30050-9?dgcid=raven_jbs_etoc_email

 

31.     Wang H#, Zhu QY#, Ding LF, Shen Y, Yang CY, Xu F, Shu C, Guo YJ, Xiong ZW, Shan QH, Jia F, Su P, Yang QR, Li B, Cheng YX, He XB, Wu F, Zhou JN, Xu FQ, Han H, Liu PM* & Bi GQ*. Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. National Science Review 6:982-992. (2019) https://academic.oup.com/nsr/article/6/5/982/5475673?login=false

 

32.     Villette V#, Chavarha M#, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi DQ, Yang RZ, Kim BB, Ayon A, Jalil A, St-Pierre F, Schnitzer MJ, Bi GQ, Toth K, Ding J, Dieudonne S* & Lin MZ*. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 179, 1590-1608 e23. (2019)

   https://pmc.ncbi.nlm.nih.gov/articles/PMC6941988/

 

33.     Tang JS#, Yuan F#, Shen XK#, Wang ZR, Rao MY, He YY, Sun YH, Li XY, Zhang WB, Li YJ, Gao B, Qian H, Bi GQ, Song S, Yang JJ *& Wu HQ*. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Advanced Materials 31, e1902761. (2019) https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.201902761

 

34.     Sun R#, Liu YT#, Tao CL#*, Qi L, Lau PM, Zhou ZH & Bi GQ. An efficient protocol of cryo-correlative light and electron microscopy for the study of neuronal synapses. Biophysics Reports 5, 111-122. (2019) https://link.springer.com/article/10.1007/s41048-019-0092-4

 

35.    Liu YT#, Tao CL#, Lau PM, Zhou ZH* & Bi GQ*. Postsynaptic protein organization revealed by electron microscopy. Current opinion in structural biology 54: 152-160. (2019) https://www.sciencedirect.com/science/article/pii/S0959440X18301623?via%3Dihub

 

36.     Liu YT, Jih J, Dai XH, Bi GQ & Zhou ZH*. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 570, 257-261. (2019) https://www.nature.com/articles/s41586-019-1248-6

 

37.     Gong DY#, Dai XH#, Jih J#, Liu YT#, Bi GQ, Sun R* & Zhou ZH*. DNA-Packing Portal and Capsid-Associated Tegument Complexes in the Tumor Herpesvirus KSHV. Cell 178, 1329-1343. (2019) https://pmc.ncbi.nlm.nih.gov/articles/PMC6753055/

 

38.     Xu F, Shi DQ, Lau PM, Lin MZ* & Bi GQ*. Excitation wavelength optimization improves photostability of ASAP-family GEVIs. Molecular Brain 11:32. (2018) https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-018-0374-7

 

39.     Tao CL#, Liu YT#, Zhou ZH, Lau PM & Bi GQ*. Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity. Frontiers in Neuroanatomy 12, 48. (2018) https://www.frontiersin.org/journals/neuroanatomy/articles/10.3389/fnana.2018.00048/full

 

40.     Tao CL#, Liu YT#, Sun R, Zhang B, Qi L, Shivakoti S, Tian CL, Zhang PJ, Lau PM, Zhou ZH* & Bi GQ*. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy. Journal of Neuroscience 38, 1493-1510. (2018) https://www.jneurosci.org/content/38/6/1493

 

41.     Sun R, Chen X*, Yin CY, Qi L, Lau PM, Han H & Bi GQ*. Correlative light and electron microscopy for complex cellular structures on PDMS substrates with coded micro-patterns. Lab on a Chip 18, 3840-3848. (2018) https://pubs.rsc.org/en/content/articlelanding/2018/lc/c8lc00703a

 

42.     Si Z#, Zhang J#, Shivakoti S, Atanasov I, Tao CL, Hui WH, Zhou K, Yu XK, Li WK, Luo M, Bi GQ & Zhou ZH*. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLoS Pathog 14, e1007452. (2018) https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007452

 

43.     Liu S#, Xu LY#, Guan FH#, Liu YT, Cui YX, Zhang Q, Zheng X, Bi GQ, Zhou ZH*, Zhang X* & Ye S*. Cryo-EM structure of the human α5β3 GABAA receptor. Cell Research 28, 958-961. (2018)

  https://www.nature.com/articles/s41422-018-0077-8

 

44.     Guo YJ#, Tang X#, Zhang JC, Jin S, Li JN, Ding LF, Zhang KM, Yang CY, Zhou H, He XB, Xu FQ, Bi GQ, Xu L* & Lau PM*. Corticosterone Signaling and a Lateral Habenula-Ventral Tegmental Area Circuit Modulate Compulsive Self-Injurious Behavior in a Rat Model. Journal of Neuroscience 38, 5251-5266. (2018) https://www.jneurosci.org/content/38/23/5251

 

45.    Du ZJ, Bi GQ & Cui XT. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. Advanced Functional Materials 28. (2018) https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.201703988

 

46.     Yuste R*, Goering S*, Arcas BAY, Bi GQ, Carmena JM, Carter A, Fins JJ, Friesen P, Gallant J, Huggins JE, Illes J, Kellmeyer P, Klein E, Marblestone A, Mitchell C, Parens E, Pham M, Rubel A, Sadato N, Sullivan LS, Teicher M, Wasserman D, Wexler A, Whittaker M & Wolpaw J. Four ethical priorities for neurotechnologies and AI. Nature 551, 159-163. (2017)

   https://www.nature.com/articles/551159a

 

47.     Liu YT#, Jiang J#, Bohannon KP, Dai XH, Gant Luxton GW, Hui WH, Bi GQ, Smith GA & Zhou ZH*. A pUL25 dimer interfaces the pseudorabies virus capsid and tegument. Journal of General Virology 98, 2837-2849. (2017) https://www.microbiologyresearch.org/content/journal/jgv/10.1099/jgv.0.000903

 

48.     Fu ZX, Tan X, Fang HQ, Lau PM, Wang XH*, Cheng HP* & Bi GQ*. Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity. Nature Communications 8, 31. (2017)

https://www.nature.com/articles/s41467-017-00043-3

 

49.     Wang P, Du J, Liu H, Bi G*& Zhang G*. Small quinolinium-based enzymatic probes via blue-to-red ratiometric fluorescence. Analyst 141, 1483-1487. (2016) https://pubs.rsc.org/en/content/articlelanding/2016/an/c5an02480c

 

50.     Chen XF, Xu C, Wang T, Zhou C, Du JJ, Wang ZP, Xu HX, Xie TQ, Bi GQ, Jiang J, Zhang XP*, Demas JN, Trindle CO, Luo Y & Zhang GQ*. Versatile Room-Temperature-Phosphorescent Materials Prepared from N-Substituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angew Chem Int Ed Engl 55, 9872-9876. (2016) https://onlinelibrary.wiley.com/doi/10.1002/anie.201601252

 

51.     Chai YH, Bi GQ, Wang LP, Xu FQ, Wu RQ, Zhou X, Qiu BS, Lei H, Zhang YY & Gao JH*. Direct detection of optogenetically evoked oscillatory neuronal electrical activity in rats using SLOE sequence. Neuroimage 125, 533-543. (2016) https://www.sciencedirect.com/science/article/pii/S1053811915009702?via%3Dihub

 

52.     Wei PF#, Liu N#, Zhang ZJ#, Liu XM, Tang YQ, He XB, Wu BF, Zhou Z, Liu YH, Li J, Zhang Y, Zhou XY, Xu L, Chen L, Bi GQ, Hu XT, Xu FQ & Wang LP*. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications 6:6756. (2015)

https://www.nature.com/articles/ncomms7756

 

53.     Shi L, Du X, Zhou H, Tao CL, Liu YT, Meng FT, Wu G, Xiong Y, Xia C, Wang Y, Bi GQ & Zhou JN*. Cumulative effects of the ApoE genotype and gender on the synaptic proteome and oxidative stress in the mouse brain. Int J Neuropsychopharmacol 17, 1863-1879. (2014) https://academic.oup.com/ijnp/article/17/11/1863/2910098?login=false

 

54.    Zhang XK#, Ge P#, Yu XK, Brannan JM, Bi GQ, Zhang QF, Schein S & Zhou ZH*, Cryo-EM structure of the mature dengue virus at 3.5-angstrom resolution. Nature Structural & Molecular Biology 20:105-U133. (2013) https://www.nature.com/articles/nsmb.2463

 

55.     Li XY#, Liu HJ#, Sun XX, Bi GQ* & Zhang GQ *, Highly Fluorescent Dye-Aggregate-Enhanced Energy-Transfer Nanoparticles for Neuronal Cell Imaging. Advanced Optical Materials 1:549-553. (2013) https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adom.201300173

 

56.     Gerkin RC*, Nauen DW, Xu F & Bi GQ*, Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps. Molecular Brain 6. (2013) https://molecularbrain.biomedcentral.com/articles/10.1186/1756-6606-6-38

 

57.     Tao CL#, Xia CL#, Chen XB, Zhou ZH & Bi GQ*, Ultrastructural analysis of neuronal synapses using state-of-the-art nano-imaging techniques. Neuroscience Bulletin 28:321-332. (2012) https://link.springer.com/article/10.1007/s12264-012-1249-z

 

58.     Shim SH#, Xia CL#, Zhong GS, Babcock HP, Vaughan JC, Huang B, Wang X, Bi GQ* & Zhuang XW*, Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. P Natl Acad Sci USA 109:13978-13983. (2012)

https://www.pnas.org/doi/full/10.1073/pnas.1201882109

 

59.     Nauen DW* & Bi GQ, Measuring action potential-evoked transmission at individual synaptic contacts.Journal of Neural Engineering 9. (2012) https://iopscience.iop.org/article/10.1088/1741-2560/9/3/036014

 

60.     Vishwanathan A, Bi GQ & Zeringue HC*, Ring-shaped neuronal networks: a platform to study persistent activity. Lab on a Chip 11:1081-1088. (2011) https://pubs.rsc.org/en/content/articlelanding/2011/lc/c0lc00450b

 

61.     Stauffer WR#, Lau PM#, Bi GQ & Cui XT*, Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes. Journal of Neural Engineering 8. (2011) https://iopscience.iop.org/article/10.1088/1741-2560/8/4/044001

 

62.     Froemke RC*, Debanne D & Bi GQ. Temporal modulation of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience 2, 19. (2010) https://www.frontiersin.org/journals/synaptic-neuroscience/articles/10.3389/fnsyn.2010.00019/full

 

63.     Zhang JC, Lau PM & Bi GQ*, Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. P Natl Acad Sci USA 106:13028-13033. (2009) https://www.pnas.org/doi/full/10.1073/pnas.0900546106

 

64.    Lau PM & Bi GQ*. Reverberatory activity in neuronal networks in vitro. Chinese Science Bulletin 54, 1828-1835. (2009) https://link.springer.com/article/10.1007/s11434-009-0135-1

 

65.     Volman V*, Gerkin RC, Lau PM, Ben-Jacob E & Bi GQ, Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks. Physical Biology 4:91-103. (2007) https://iopscience.iop.org/article/10.1088/1478-3975/4/2/003

 

66.     Gerkin RC#, Lau PM#, Nauen DW, Wang YT & Bi GQ*, Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. J Neurophysiol 97:2851-2862. (2007) https://journals.physiology.org/doi/full/10.1152/jn.00860.2006

 

67.     Wang HX#, Gerkin RC, Nauen DW & Bi GQ*, Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience 8:187-193. (2005)

https://www.nature.com/articles/nn1387

 

68.     Shtrahman M, Yeung C, Nauen DW, Bi GQ & Wu XL*, Probing vesicle dynamics in single hippocampal synapses. Biophysical Journal 89:3615-3627. (2005) https://pmc.ncbi.nlm.nih.gov/articles/PMC1366854/

 

69.     Rubin JE*, Gerkin RC, Bi GQ & Chow CC, Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600-2613. (2005) https://journals.physiology.org/doi/full/10.1152/jn.00803.2004

 

70.     Lau PM & Bi GQ*, Synaptic mechanisms of persistent reverberatory activity in neuronal networks. P Natl Acad Sci USA 102:10333-10338. (2005) https://www.pnas.org/doi/full/10.1073/pnas.0500717102

 

71.     Bi GQ* & Rubin J, Timing in synaptic plasticity: from detection to integration. Trends in Neurosciences 28:222-228. (2005) https://www.cell.com/trends/neurosciences/abstract/S0166-2236(05)00046-9

 

72.     Bi GQ* & Wang HX, Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiology & Behavior 77:551-555. (2002) https://www.sciencedirect.com/science/article/pii/S0031938402009332?via%3Dihub

 

73.     Bi GQ*, Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biological Cybernetics 87:319-332. (2002) https://link.springer.com/article/10.1007/s00422-002-0349-7

 

74.     Berninger B* & Bi GQ*, Synaptic modification in neural circuits: a timely action. Bioessays 24:212-222. (2002) https://onlinelibrary.wiley.com/doi/10.1002/bies.10060

 

75.     Bi GQ & Poo MM*, Synaptic modification by correlated activity: Hebb's postulate revisited. Annual Review of Neuroscience 24:139-166. (2001) https://www.annualreviews.org/content/journals/10.1146/annurev.neuro.24.1.139

 

76.     van Rossum MCW*, Bi GQ & Turrigiano GG, Stable Hebbian learning from spike timing-dependent plasticity. Journal of Neuroscience 20:8812-8821. (2000) https://www.jneurosci.org/content/20/23/8812

 

77.     Tao HW#, Zhang LI#, Bi GQ# & Poo MM*, Selective presynaptic propagation of long-term potentiation in defined neural networks. Journal of Neuroscience 20:3233-3243. (2000)

https://www.jneurosci.org/content/20/9/3233

 

78.     Andersen SSL* & Bi GQ, Axon formation: a molecular model for the generation of neuronal polarity. Bioessays 22:172-179. (2000) https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-1878(200002)22:2%3C172::AID-BIES8%3E3.0.CO;2-Q

 

79.     Togo T, Alderton JM, Bi GQ & Steinhardt RA*, The mechanism of facilitated cell membrane resealing. Journal of Cell Science 112:719-731. (1999) https://journals.biologists.com/jcs/article-abstract/112/5/719/25924/The-mechanism-of-facilitated-cell-membrane?redirectedFrom=fulltext

 

80.     Bi GQ* & Poo MM, Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401:792-796. (1999) https://www.nature.com/articles/44573

 

81.     Bi GQ & Poo MM*, Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18:10464-10472. (1998) https://www.jneurosci.org/content/18/24/10464

 

82.     Bi GQ, Morris RL, Liao GC, Alderton JM, Scholey JM & Steinhardt RA*, Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. Journal of Cell Biology 138:999-1008. (1997)https://rupress.org/jcb/article-abstract/138/5/999/688/Kinesin-and-Myosin-driven-Steps-of-Vesicle

 

83.     Bi GQ, Alderton JM & Steinhardt RA*, Calcium-regulated exocytosis is required for cell membrane resealing. Journal of Cell Biology 131:1747-1758. (1995) https://rupress.org/jcb/article-abstract/131/6/1747/56469/Calcium-regulated-exocytosis-is-required-for-cell

 

84.     Steinhardt RA*, Bi GQ & Alderton JM, Cell-Membrane Resealing by a Vesicular Mechanism Similar to Neurotransmitter Release. Science 263:390-393. (1994) https://www.science.org/doi/abs/10.1126/science.7904084

 

85.     Denetclaw WF*, Bi GQ, Pham DV & Steinhardt RA, Heterokaryon Myotubes with Normal Mouse and Duchenne Nuclei Exhibit Sarcolemmal Dystrophin Staining and Efficient Intracellular Free Calcium Control. Molecular Biology of the Cell 4:963-972. (1993) https://www.molbiolcell.org/doi/abs/10.1091/mbc.4.9.963

 

A full list of publications can be found at Guoqiang Bi - Google 学术搜索