主要研究方向及内容
1、神经突触与环路结构的跨尺度解析
大量神经元通过更多突触联结形成精细的神经环路是大脑高级功能的物质基础,其中的巨大复杂性是人们理解脑功能原理的关键挑战。我们通过前沿超微成像技术,包括光学与电子显微技术的应用、发展和整合,以纳米分辨率解析突触联结的分子组织构架与功能状态,并通过发展高通量光学显微技术描绘从大脑到全身的介观神经联结图谱,长期目标是在此基础上刻画实现神经系统基本功能的神经线路图,建立神经体系跨尺度结构功能大模型,为理解人类认知和生理功能机制以及相关疾病机理提供精准底层数据基础,并进而启发类脑智能计算的结构框架。
2、突触可塑性与学习机制
可塑性是神经突触的重要性质,突触的可塑性变化与神经元网络电活动相互作用,形成复杂而有序的动态系统。我们利用电生理记录、超分辨及高速荧光显微、冷冻电子断层成像等技术,在离体培养的神经元模型体系中探索突触可塑性的规则和分子细胞机制,并结合行为学、全脑环路示踪和活动印迹分析、活体荧光成像和多通道光纤记录、光遗传和化学遗传调控等方法,在整体动物模型中研究学习记忆的神经表达与环路基础。
3、神经环路解析前沿技术
通过多学科交叉合作,我们特别关注解析神经突触与环路结构功能的有效技术与方法,重点发展与应用冷冻电子显微(CryoEM)、光电关联显微、超分辨光学显微(STORM)等纳米成像技术,并自主研发新型超高速三维荧光显微技术(VISoRs)、超微型头戴式显微镜、多通道光纤记录、以及基于AI的大数据分析系统用于全脑乃至全身结构与活动的高通量成像和定量解析。
Main Research Interest
The brain consists of myriad neurons that connect with one another through heterogeneous and plastic synaptic connections, forming highly ordered circuits with multi-scale complexity. Neuronal activity within and across these circuits shapes their connectivity and underlies perception, emotion, decision and learning in animals and human.
Towards understanding this complex system, Dr. Bi’s group aims at developing and applying cutting-edge light and electron microscopy techniques, as well as AI-based data analysis methods, to explore the organization and activity of the brain across multiple spatiotemporal scales. The ultimate goal is to understand the logic behind the structure and dynamics of brain circuits, to reveal basic mechanisms underlying brain function and dysfunction, and to inspire next generation artificial intelligence.
Current research directions include:
(1) Architecture of synapses and neuronal circuits;
(2) Synaptic plasticity and learning in vitro, in vivo and in silico;
(3) Cross-scale imaging, AI-based big data techniques and their biomedical applications.